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Doppler shift corrections to ocean acoustic signals are complicated by the multi-spatial-scale structure of the
ocean medium, resulting in a multi-time-scale structure of the acoustic Green function. Repeated reflections
and refractions lead in general to an infinite number of acoustic paths or modes, with different times of flight,
connecting source and receiver. The rate of change of these flight times with source or receiver motion gives
rise to Doppler shift corrections, and each acoustic path or mode has a different correction. A clean Doppler
correction �in the sense of an observable coherent motion-induced frequency shift for each path or mode� is
shown to emerge only when the medium is homogeneous along the direction of source or receiver motion,
even when it is highly inhomogeneous in directions orthogonal to the motion. A very general quantitative
theory for this correction is developed, encompassing earlier results in the literature, and presented in a form
amenable to efficient numerical implementation in data processing.
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I. INTRODUCTION

The classic Doppler frequency shift �=�0+�� for a har-
monic source with angular frequency �0 moving in an infi-
nite homogeneous acoustic medium with sound speed c is
given by

��

�0
=

n̂rs · �vs − vr�/c
1 − n̂rs · vs/c

, �1.1�

where vs and vr are, respectively, the source and receiver
velocities—see Fig. 1. To lowest order in v /c, where v rep-
resents the overall scale of �vs� and �vr�, n̂rs�t� is the �instan-
taneous� unit vector pointing from source position xs�t� to
receiver position xr�t�. Higher order corrections arise from
propagation delay effects: in fact n̂rs should point from
where the source was at the retarded time t�, when the signal
left the source, determined by the condition t− t�= �xr�t�
−xs�t�� � /c. The formula �1.1� also remains valid for acceler-
ating source and receiver if one interprets vr= ẋr�t�, vs

= ẋs�t��, the instantaneous velocities at actual and retarded
times. Since the measurement of a well defined frequency to
an accuracy �� requires observation of a stable harmonic
signal over a time interval �t of order 2� /��, implicit in
Eq. �1.1� is the assumption that time variation of the right
hand side be slow on this same scale. This places limits on
both source and receiver speed �through the rates of change
of both the cross range n̂rs and the range �xr−xs�, since the
latter determines the overall amplitude of the signal� and
acceleration. The former requires that

�

�xr − xs�
� 1, �1.2�

where �=2�c /�0 is the wavelength. This turns out not to be
a limit on the velocities, but on the number of wavelengths
over which the outgoing wave from the source may be ap-
proximated locally by a plane wave: larger v reduces �t, but
increases �� in such a way that the product ���t remains
unchanged. The condition on the acceleration is

�0a

v2 � 1, �1.3�

where a represents the overall scale of �v̇s� and �v̇r�. This may
be written in the form �0 /v�v /a, which states that the time
to travel a wavelength should be much smaller than the time
over which the velocities change by a factor of order unity.

FIG. 1. �Color online� A snapshot of the wave fronts produced
by a source with fixed frequency �0 moving at a uniform velocity
vs, in this case through a homogeneous medium. The receiver, mov-
ing at velocity vr, sees a Doppler shifted frequency ��t� determined
by the rate at which it crosses these wave fronts, which must be
nearly equally spaced �local plane wave condition� in order for ��t�
to be well defined. In this case, wave fronts are spherical, and this
leads to the condition �1.2� that the source-receiver separation be
much larger than the wavelength. For an inhomogeneous medium,
the wave fronts will be nonspherical and their local spacing may
vary strongly—leading to an ill-defined local wave number. There
may, however, be certain symmetry directions, together with a more
general condition �1.4�, along which they are nearly equally spaced
and if vs and vr conform to these directions, a well defined Doppler
frequency will exist.
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The aim of this paper is to generalize all of the above
notions, to the greatest degree possible, to more complicated
acoustic media, bounded by various interfaces, and with
sound speed that may vary strongly with position. Examples
to keep in mind are deep ocean and littoral environments
with depth- and range-dependent sound speed profiles,
range-dependent bathymetry, and heterogeneous propagation
parameters in the sea bottom.

A few key ideas underlie the results:
�1� The existence of strong reflection and refraction ef-

fects in heterogeneous environments implies that a single
source will in general produce multiple arriving waves at the
receiver. At minimum therefore generalization of the notion
of Doppler shift requires a decomposition of the signal into
an infinite number of separate arrivals from different direc-
tions, each with its own frequency shift �1–4�. Heuristically,
a different version of Fig. 1 could be plotted for each arrival.

�2� Generalization of Eq. �1.2� determines the criterion for
the existence of a well defined Doppler shift: there must be a
length scale � �replacing �xr−xs�� with

�

�
� 1, �1.4�

such that along both source and receiver trajectory each ar-
rival component of the acoustic signal is well approximated
by a plane wave. If this were not the case, the motion would
simply induce some large, nonharmonic change in the signal
that has no simple spectral interpretation. Note that the
plane-wave-like approximation need be valid only along the
one-dimensional curves defined by the motion, not in the full
three-dimensional region surrounding them. For example, as
in oceanographic applications, the medium may have strong
vertical variations in the sound speed on scales smaller than
the wavelength, but be nearly translation invariant in the
horizontal. The vertical variation of the acoustic signal may
then be quite complicated �e.g., described by a vertically
localized waveguide mode profile�, but the horizontal varia-
tion will be plane-wave like. Only horizontal source or re-
ceiver motion will then produce a well defined Doppler shift.

�3� Since the wavelength � decreases with increasing fre-
quency, the criterion �1.2� depends strongly on the source
frequency �0. The lower the frequency, the greater the re-
strictions on allowed motion. In the ocean the sound speed is
of order 1500 m/s, and typical vertical variations in the
sound speed occur on a scale �V�100 m. The condition
� /�V�0.1, say, restricts motion to horizontal for frequencies
below about 150 Hz. If there is significant horizontal varia-
tion in the medium on some scale �H	�V, there will be a
corresponding lower bound on the allowed frequency even
for horizontal motion, given by �V /�H times the vertically
limited frequency.

�4� Given the previous restriction on source and receiver
trajectories, condition �1.3� on the acceleration remains un-
changed: the velocities should not change substantially as the
source or receiver travels many wavelengths.

�5� Condition �1.4� shows that the velocity scale v plays
no qualitative role in the Doppler analysis. Higher velocities
lead to larger Doppler shifts, but impose no extra conditions
on the sound speed profile or on the accuracy to which the

shift can be measured. Quantitative changes, as a function of
the ratio v /c, will of course occur. This simple observation
already hints that Doppler shifts are not a perturbative phe-
nomenon, but must be understood in a broad context in
which the actual size of v plays a lesser role.

�6� It transpires that the mathematical properties of the
acoustic field that lead to well defined Doppler shift effects
are very general and may be formulated independently of the
more specific properties of the underlying dynamical equa-
tion. The formal results of this paper, presented in Sec. VI,
should therefore find future application to larger classes of
wave equations for which the required mathematical struc-
ture can be established.

The results derived in this paper should have a number of
practical applications. There has been enormous progress in
the past two decades in incorporating ocean environment
models into analysis of low frequency, long distance sound
propagation along the ocean waveguide �SOFAR channel�
�5,6�. Matched field processing �MFP� methods for source
localization and environmental inversion are well developed
in the case of fixed sources and receivers �7,8�. However,
there are important applications in which moving sources are
to be passively detected in noisy and highly variable envi-
ronments. A key goal is to process sonar array data to esti-
mate the range, bearing, and speed of the source, perhaps in
the presence of much louder interfering sources. MFP is a
powerful approach, but requires very accurate modeling of
both the ocean environment and Doppler effects. The former
incorporates the strong reflection and refraction effects that
exist in the ocean environment, while the present results for
the latter should help mitigate motion degradation effects
�Doppler broadening� and permit increased signal integration
times that are crucial to extracting a low level signal from a
noisy background. In addition, the results may be used in the
formulation of matched field inversion problems, which use
acoustic data to actually estimate environmental parameters
using both stationary and moving receivers and sources.

The remainder of this paper is organized as follows. In
Secs. II and III the basic mathematical problem is defined. In
Sec. IV the high frequency, geometrical optics limit, where a
ray picture of the signal propagation emerges, is considered.
This allows one to examine a regime in which there exists a
straightforward classical interpretation. In Sec. V, as an in-
troduction to acoustic eigenmode ideas to be used later, it is
shown how the ray picture may be formulated in terms of
high frequency acoustic eigenmodes in the case of range in-
dependent media. In Sec. VI the general theory is developed
under the conditions only that Eqs. �1.3� and �1.4� hold. The
Doppler shift emerges from a stationary phase approximation
in which the large parameter N=� /� controls the asymptotic
analysis. In Sec. VII the special case of a range-independent
medium, where sound speed depends only on the vertical
coordinate, is considered. This case has been considered pre-
viously in Refs. �1,2�, but with explicit results only for the
case of a stationary receiver, and in Ref. �4� using a gener-
alization to a nonstationary receiver that is valid only at
small velocities. In Sec. VIII range-dependent media are con-
sidered in the limit of very slow horizontal variation where
the commonly used adiabatic approximation is valid. This
case provides an interesting example where the mathematical
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requirements on the Green function are indeed obeyed by the
solutions to the acoustic equation. We comment on previous
formulations �3,4� of this case. The paper is concluded in
Sec. IX and the key results summarized with an eye toward
future numerical implementation.

II. PRELIMINARIES

The acoustic scalar wave equation is considered in either
the time domain,

� 1

c2�t
2 − 
 � ·

1



� ���x,t� = S�x,t� , �2.1�

or frequency domain,

− ��2

c2 + 
 � ·
1



� ��̂�x,�� = Ŝ�x,�� , �2.2�

where � is the pressure field, S is the source, and 
�x�, c�x�
are, respectively, the �position-dependent� steady state fluid
density and sound speed. The Fourier transform pair is de-
fined by

�̂�x,�� = 	
−�

�

dt��x,t�ei�t,

��x,t� = 	
−�

� d�

2�
�̂�x,��e−i�t, �2.3�

and similarly for S, Ŝ. Quantitative description of a number
of ocean acoustic phenomena require an additional coupling
to the elastic sub-bottom medium, described by a vector elas-
tic wave equation with multiple polarization-dependent
sound speeds. Widely used acoustic codes, such as KRAKEN

�9�, account explicitly for such effects. Although in this work
only the scalar equation is considered, most of the formal
results carry over to the vector case with trivial modifica-
tions, so long as source and receiver are located in the ocean
column itself. The required generalizations will be indicated
at various points in what follows.

The formal solution to Eq. �2.1� may be expressed in the
form

��x,t� =	 dt�	 d3x�G�x,x�;t − t��S�x�,t�� , �2.4�

where the Green function G satisfies �10�

� 1

c2�t
2 − 
 � ·

1



� �G�x,x�;t − t�� = �x − x���t − t�� .

�2.5�

Causality implies that G vanishes for t� t�, so that the t�
integral in Eq. �2.4� is in fact restricted to this domain.

By Fourier transforming Eq. �2.4� one obtains

�̂�x,�� =	 d3x�Ĝ�x,x�;��Ŝ�x�;�� , �2.6�

in which Ĝ is the solution to

− 

 � ·
1



� +

�2

c2 �Ĝ�x,x�;�� = �x − x�� . �2.7�

In particular, a stationary point source S�x , t�=S0�t��x−xs�
produces an acoustic field

�̂�x,�� = Ĝ�x,xs;��Ŝ0��� , �2.8�

where Ŝ0��� is the Fourier transform of S0�t�.

III. MOVING SOURCES AND RECEIVERS

Consider now a moving point source S�x , t�=S0�t��x
−xs�t��, where xs�t� is the source position and S0�t� is the
signal in the reference frame of the source. We allow the
receiver position xr�t� to move as well. From Eq. �2.2� the
measured signal is

�0�t� � ��xr�t�,t� =	 dt�G�xr�t�,xs�t��;t − t��S0�t�� .

�3.1�

Viewed as a function of xr at fixed t, this is the function
whose wave fronts are plotted in Fig. 1 for a harmonic
source. Since the two time dependencies now appear in the
spatial arguments of G, the Fourier transform no longer has
the simple factorization �2.8�. This can be seen more explic-
itly by substituting the temporal Fourier representations of
�0, S0, and G:

�̂0��� =	 d��

2�
Ŝ0���� 	 d��

2�
	 dt ei��−���t

�	 dt�ei���−���t�Ĝ�xr�t�,xs�t��;��� . �3.2�

In the limit where xr, xs are time independent, the two time
integrals yield delta functions that enforce �=��=��, and
Eq. �2.8� is recovered. Otherwise, the remaining integrals

operate nontrivially on the spatial dependence of Ĝ.
Direct numerical implementation of Eq. �3.1� is extremely

time consuming �11�, and is inappropriate where rapid data
processing is required. The main goal of this paper is to
derive forms that may be more efficiently implemented when
certain uniformity conditions on the sound speed variation
are satisfied.

When condition �1.3� on the acceleration holds, in the
neighborhood of any given reference time t0 one may use a
local constant velocity approximation:

xr�t� = xr
0 + vr�t − t0� ,

xs�t�� = xs
0 + vs�t� − t0� , �3.3�

where xs
0 and xr

0 are conveniently chosen reference positions.
One should view vr and vs as being weakly dependent on t0
on a time scale determined by Eq. �1.3�. Assuming for the
moment that Eq. �3.3� is valid for all times, one observes that
the time integrations in Eq. �3.2� correspond to partial spatial

Fourier transforms of Ĝ along the rays defined by Eq. �3.3�.
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In general, these correspond to separate transforms in the two
spatial coordinates. However, simplification occurs in the
special case where G is translation invariant in the plane
defined by vr and vs. If r, r� are two-dimensional vectors in
this plane, G is a function only of the difference variable r
−r�, with r=rr

0+vr�t− t0� and r�=rs
0+vs�t�− t0� �12�. One ob-

tains

�̂0��� =	 d2k

�2��2eik·�rr
0−rs

0−�vr−vs�t0�

�Ŝ0�� + k · �vr − vs��G̃�k;zr
0,zs

0;� + k · vr� , �3.4�

where G̃ is the spatial Fourier transform of Ĝ in this differ-
ence variable. In the present notation r and r� are taken to lie
in the xy plane, and we decompose xr

0= �rr
0 ,zr

0�, xs
0= �rs

0 ,zs
0�.

For a pure unit amplitude tone, Ŝ0���=2���−�0�, the in-
verse Fourier transform of Eq. �3.4� yields the time domain
signal

�0�t� = e−i�0t	 d2k

�2��2eik·rrs�t�G̃�k;zr
0,zs

0;�0 + k · vs� ,

�3.5�

where rrs�t�=rr
0−rs

0+ �vr−vs��t− t0� is the horizontal separa-
tion vector at time t.

Equations �3.4� and �3.5� �with t0=0� are identical to the
basic results, Eqs. �15� and �16�, of Schmidt and Kuperman
�4�. Notice that the Doppler shift in principle, through the
wave-vector integral, couples the measured frequency � at
the receiver to the entire spectrum of source frequencies ��
=�+k · �vr−vs�, with amplitude given by the Green function
at yet another frequency ��=�+k ·vr �though one observes
that �=�� for a stationary receiver�. In the limit where vs
=vr=0, the wave number integration decouples from the fre-
quency dependence, and one recovers Eq. �2.8� with x=xr

0

and xs=xs
0.

The Fourier transform �3.2� is a global functional of
�0�t�, sensitive for each � to its values at all times. There-
fore Eq. �3.4�, with its extension of the local velocity values
to all time, in general differs substantially from the exact
�̂0��� which necessarily incorporates the full t0 dependence
of vr and vs. However, experimental Fourier transform data
is actually collected over sequential windows with some fi-
nite width �t �13�. The data therefore consist of the Fourier
transform of the product of �0�t� with a window function
w�t− t0�:

�̂t0
��� � 	 dtw�t − t0��0�t�ei�t

=	 d��

2�
ei��t0ŵ�����̂0�� − ���

= ei��−�0�t0	 d2k

�2��2 ŵ�� − �0 + k · �vr − vs��

� eik·�rr
0−rs

0�G̃�k;zr
0,zs

0;�0 + k · vs� . �3.6�

The Fourier transform ŵ of the window function has width

2� /�t, limiting the range of k contributing to the final inte-
gral. One of the central results of this paper will be simple
expressions for these window transforms.

Numerical implementation of Eq. �3.4� or �3.6� remains
quite involved due to the required two-dimensional wave-
number integration. Schmidt and Kuperman �4� make a fur-
ther simplification with the replacement

k · vr → kn̂rs · vr,

k · vs → kn̂rs · vs, �3.7�

where n̂rs is the unit vector along rrs�t0�=rr
0−rs

0. Thus the

arguments of ŵ0 and G̃ in Eq. �3.6� are replaced by �−�0
+kn̂rs · �vr−vs� and �0+kn̂rs ·vs, respectively. These depend
only on k= �k�, and one may perform the angular integration
to obtain

�̂t0
���  	

0

� kdk

2�
J0�k�rr

0 − rs
0��ŵ�� − �0 + kn̂rs · �vr − vs��

� G̃�k;zr
0,zs

0;�0 + kn̂rs · vs� . �3.8�

This approximation therefore reduces evaluation of �̂t0
to a

one dimensional Hankel transform, for which efficient nu-
merical implementations exist, and is argued to be accurate
for large separation and small velocities where the orienta-
tion of the separation vector rrs�t� changes very little over the
course of a window time �t. These authors use a further
sequence of approximations to relate Eq. �3.8� to an expan-
sion in terms of vertical eigenmodes, which is even simpler
to implement numerically. We will show in Sec. VII that this
last result �with minor modifications� agrees with the low
velocity limit of Hawker’s �1� rigorous results �which, as it
turns out, may be trivially extended to the case of a moving
receiver�. The latter are in turn recovered exactly from the
present theory when specialized to range-independent media.

IV. DOPPLER SHIFT CORRECTIONS AT HIGH
FREQUENCIES

A. Form of the Green function

We begin the formal theory of Doppler corrections by
considering the high frequency limit in which the wave-
length is much shorter than all scales of variation � of the
sound speed. In this limit the WKB approximation provides a
controlled perturbation theory, yielding the Green function in
the asymptotic form �5�,

Ĝ�x,x�;��  �
j

�̂ j
�0��x,x��ei��j�x,x��

G�x,x�;t − t��  �
j

�̂ j
�0��x,x���t − t� − � j�x,x��� ,

�4.1�

in which the sum is over all classical ray trajectories from x
to x� �obeying Fermat’s principle�, with �minimal� travel
time
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� j�x,x�� = 	
0

s ds�

c�x j�s���
, �4.2�

where x j�s�� is the path of the jth ray, parametrized by arc
length, satisfying the Eikonal equation ����2=1/c2, with
x j�0�=x� and x j�s�=x �see Fig. 2 for an illustration�. For
small s /� one finds � j�x ,x���x−x� � /c�x��. The amplitude
is

�̂ j
�0��x,x�� =� 
�x�


�x��
lim
s0→0

1

4�s0

�exp�−
1

2
	

s0

s

ds�c�x j�s����2��x j�s���� , �4.3�

where the logarithmic singularity in the exponent yields
� j

�0��x ,x�s��→1/4�s as s→0.
The form �4.1� predicts a sharp wave front traveling at

the local speed of sound. More generally, the amplitude
�̂ j

�0��x ,x�� is replaced by a frequency-dependent factor
�̂ j�x ,x� ;�� with an asymptotic expansion in inverse powers
of the frequency:

Ĝ�x,x�;�� = �
j

�̂ j�x,x�;��ei��j�x,x��,

G�x,x�;t − t�� = �
j

� j�x,x�;t − t� − � j�x,x��� , �4.4�

where

�̂ j�x,x�;��  �
n=0

�

�i��−n�̂ j
�n��x,x�� ,

� j�x,x�;��  �̂ j
�0��x,x����� + ��− ���

n=1

�
�− ��n−1

�n − 1�!
�̂ j

�n��x,x�� ,

�4.5�

and ��s� is the unit step function. More rigorously, the
expansion parameter is 2�c /��=� /�, where �−1

���c � /c , ��
 � /
 is the inverse scale of the variation of the
environmental parameters, and the condition � /��1 coin-
cides precisely with the condition �1.4� for the existence of a
well defined Doppler shift.

The WKB formalism provides explicit expressions for the
�̂ j

�n��x ,x��, in the form of multiple integrals along the ray
path. The difference �̂ j�x ,x� ;��− �̂ j

�0��x ,x�� vanishes at large
frequency and provides the continuous contribution to � j
trailing the leading delta-function pulse. Equation �4.5�
yields this continuous part in the form of a one-sided Taylor
series immediately following the initial wave-front arrival.
Since it is only asymptotic, the low frequency part of �̂ j �or,
equivalently, the shape of the pulse far behind the leading
front, in general containing refracted parts of the signal trav-
eling in considerably different directions� is not captured by
this expansion, and a different nonperturbative method must
be found. This will be the focus of later sections where an
acoustic eigenmode expansion is used.

An example should clarify the origin of Eq. �4.1�. In an
infinite homogeneous space there is only one ray, namely the
straight line from x� to x, and �0�x ,x��= �x−x� � /c. The cor-
responding function �0 takes the exact form

�0�x,x�;t − t� − �0� =
1

4�c�0
�t − t� − �0� . �4.6�

In a homogeneous half space there will be a second ray
which undergoes a boundary reflection. The travel time is
�1�x ,x��= �x− x̄� � /c, where x̄�= �x� ,y� ,−z�� is the mirror re-
flection of x� through the boundary, and �1 is given by the
negative of Eq. �4.6� with �1 replacing �0. In a homogeneous
slab of finite width h0 there will be an infinite number
of rays corresponding to multiple reflections with increas-
ingly later arrival times � j±= �x− x̄ j±� � /c, where x̄ j±�
= �x� ,y� ,2jh0±z��,with j=0, ±1, ±2, ±3, . . . , and � j± given
by ±�−1� j times Eq. �4.6� with � j± replacing �0.

In this example, the zeroth order form �4.1� turns out to be
exact, and the rays consist of straight line segments. Ray
bending, along with the trailing part of the pulse, would be
generated by variations of the sound speed within the slab.
For nearly horizontal rays in a waveguide, the arrivals will
correspond to rays with different numbers of oscillations
within the channel. It is clear that for large j the different
continuous contributions to G will start to run together, and
the decomposition �4.4� becomes ambiguous for that part of
the signal. In addition, we have neglected acoustic damping
terms in Eq. �2.1�, which act preferentially on the high fre-
quency components of the signal and will serve to increas-
ingly broaden even the delta-function contribution as j in-
creases. However, in analyzing data from a high frequency
source �which, via Eq. �2.8�, suppresses the low frequency
parts of the Green function� the decomposition �4.4� should
be unambiguous. The lower frequency part of the Green
function, for which the geometrical optics approximation
breaks down, will be addressed in the general theory of
Sec. VI.

FIG. 2. �Color online� Schematic illustration of the high fre-
quency ray theory. The fronts are surfaces of constant travel time �
from a fixed source position xs. A given trajectory with an initial
direction n̂s, connecting xs to a given receiver position xr, is always
normal to these fronts, and arrives at xr traveling, in general, in a
different direction n̂r. In this illustration the speed of sound in-
creases to the left and right, and decreases upwards and downwards.
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B. Doppler theory

Equation �4.4� is now used to derive simple expressions
for the Doppler shift correction. The functions � j and � j are
assumed to be smooth in their explicit x, x� dependence
�though, as seen in Eq. �4.1�, the implicit dependence
through the third argument of � j is extremely unsmooth�. We
therefore approximate

� j�xr�t�,xs�t��;t − t� − � j�  Aj
r�t�Aj

s�t��� j�xr
0,xs

0;t − t� − � j� ,

� j�xr�t�,xs�t���  � j
0 + w j

r · xr�t� − w j
s · xs�t�� �4.7�

in which we have defined

Aj
r�t� = 1 + K j

r · xr�t�, K j
r = �rln �̂ j

�0��xr
0,xs

0� ,

Aj
s�t�� = 1 + K j

s · xs�t��, K j
s = �sln �̂ j

�0��xr
0,xs

0� ,

� j
0 = � j�xr

0,xs
0� , �4.8�

and �r, �s are gradients with respect to the receiver and
source arguments, respectively. In the case of locally linear
motion in the neighborhood of a reference time t0 one has

xr�t� = vr�t − t0�, xs�t�� = vs�t� − tj�� ,

tj� � t0 − � j
0, �4.9�

where, due to the time-of-flight delay, the receiver position is
measured relative to its retarded time position. Note that the
tj� are different for each j, so that in general, for large source-
receiver separation or large j, the relevant source velocity
will vary with j �14�. The slowness vectors in the neighbor-
hood of the source and receiver are defined by

w j
r = �r� j�xr

0,xs
0� =

1

c�xr
0�

n̂ j
r,

w j
s = − �s� j�xr

0,xs
0� =

1

c�xs
0�

n̂ j
s, �4.10�

where n̂ j
r and n̂ j

s denote the ray directions at receiver and
source, respectively.

The form �4.7� relies on the assumption that a single over-
all amplitude scale and a single time shift suffices to describe
� j, i.e., that small shifts in x, x� lead only to an overall
change in the scale of the signal, and to a shift in its time
origin, not to a more complicated change in its shape. This
assumption certainly holds for the form �4.6�, and we have
argued that it will generalize to inhomogeneous media in the
immediate neighborhood of the leading pulse which domi-
nates the high frequency components of the Green function.
Implicit here also is the assumption that rapid changes in the
environment, for example source or receiver passing in or
out of the shadow of a significant bathymetric perturbation,
do not occur in the neighborhood of t0—this is part of the
condition �1.4�. Such events may be expected in real data,
but probably only for limited periods of time which may
identified and treated separately.

By incorporating Eq. �4.7� into Eq. �3.1�, the received
signal takes the form

�0�t� = �
j

� j�t� ,

� j�t� = Aj
r�t� 	 dt�Aj

s�t��S0�t��� j�xr
0,xs

0;
t − t0

� j
r

−
t� − tj�

� j
s � ,

�4.11�

in which the source and receiver Doppler scalings for each
arrival are

� j
r �

1

1 − w j
r · vr

, � j
s �

1

1 − w j
s · vs

. �4.12�

Each term in Eq. �4.11� may separately be put in a form that
mimics the signal for stationary source and receiver �over the
limited time interval about t0 in which the modified Taylor
expansion �4.7� remains valid�: let us define

�̃ j�s� =
1

1 + � j
rK j

r · vrs
� j�t0 + � j

rs� ,

S̃j�s�� = � j
s�1 + � j

sK j
s · vss��S�tj� + � j

ss�� , �4.13�

which incorporate independent amplitude and time rescaling
for source and measured fields. Then the effective static re-
lation

�̃ j�s� =	 ds�S̃j�s��� j�xr
0,xs

0;s − s�� �4.14�

holds, with total measured signal

�0�t� = �
j

�1 + K j
r · vr�t − t0���̃ j
 t − t0

� j
r � . �4.15�

The prefactors in Eq. �4.13� compensate for the gradual,
motion-induced variation in the signal amplitude, while the
time rescalings compensate for the true Doppler shift, pro-
ducing the final staticlike relation �4.14� in which both ef-
fects have been removed from the data over a limited time
window.

Let Ŝj���, �̂ j���, and �̂ j�xr
0 ,xs

0 ;�� be the Fourier trans-

forms of S̃j�s��, �̃ j�s�, and � j�xr
0 ,xs

0 ;s�, respectively. In the
frequency domain the results take the form

Ŝj��� = 
1 − i� j
sK j

s · vs
�

��
�e−i�tj�/�j

s
Ŝ��/� j

s� ,

�̂ j��� = �̂ j�xr
0,xs

0;��Ŝj��� ,

�̂0��� = ei�t0�
j

� j
r
1 − iK j

r · vr
�

��
��̂ j�� j

r�� . �4.16�

These are once again meaningful only when convolved, via
Eq. �3.6�, with a window function about the reference time
t0. Great simplification occurs in the further approximation
where the amplitude rescalings involving K j

r, K j
s are dropped

�expected to be valid for sufficiently small windows about t0
and/or for sufficiently distant sources�. One obtains
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�̂0��� = ei�t0�
j

� j
re−i���j

r/�j
s�tj��̂ j�xr

0,xs
0;� j

r��Ŝ
� j
r

� j
s
�� ,

�4.17�
which decomposes the frequency dependence of the mea-
sured signal into a sum of terms in which the source signal is
Doppler shifted by both source and receiver motion, while
the Green function is Doppler shifted only by the receiver
motion. Note, however, that at high frequencies where these
results are most valid, �̂ j→ �̂ j

�0� becomes frequency indepen-

dent. If Ŝ���=2���−�0� represents a pure tone, �̂0��� be-
comes a spectrum of delta functions �and �0�t� a correspond-
ing superposition of pure harmonics� at the Doppler shifted
frequencies � j

D= �� j
s /� j

r��0�0�1+w j
s ·vs−w j

r ·vr� �where
the approximate form is valid for small v /c�. The appropri-
ately windowed spectrum is therefore

�̂t0
��� = ei��−�0�t0�

j

� j
rei�0�j

0
ŵ�� − � j

D��̂ j�xr
0,xs

0;� j
s�0� .

�4.18�
The time delays � j

0=� j�xr
0 ,xs

0� and reference times t0 and
tj� enter Eq. �4.17� through exponential prefactors. The
large distribution of such times implies that the exponent in

the correction factor ei��1−�j
r/�j

s�tj� �relative to the stationary

result ei��j
0
� could be of order unity or larger even for very

small source and receiver velocities. Thus the Doppler shift
introduces significant changes in the relative phases of the
terms in the sum, an effect that is clearly not accounted for
by a naive Taylor expansion in vr and vs. As a rough esti-
mate, for frequency 100 Hz, sound speed 1500 m/s and
source or receiver velocity 5 m/s, the Doppler factors will
be a few times 10−3, and the phase change will become sig-
nificant for time delays of order 1 s, i.e., for path length
differences of order 1 km, and thus readily observable in
typical applications.

In many experimental realizations �5�, the source signal
consists of a short duration, relatively high frequency pulse.
Since each � j represents the propagation of a single wave
front through the receiver position, when convolved with the
source signal according to Eq. �3.1�, one expects the received
signal to consist of a single short duration pulse immediately
following the classical delay time � j

0. Through the different
time delays, the different � j are sensitive to different parts of
the source signal history for a given fixed measurement time
t. In the case of a medium with multiple boundaries, or
waveguide regions, the spectrum of time delays will be ex-
tremely broad: the amplitude of the full Green function G
may be expected to decay as a power of 1 / t, eventually cut
off by dissipative loss mechanisms. It is this very long sys-
tem memory that precludes a more direct perturbation theory
in the velocities vr and vs. This is the time-domain counter-
part of the frequency-domain phase factor corrections.

The previous results are rather formal. In applications, the
key parameters � j, w j

s, w j
r, K j

s, K j
r must be computed explic-

itly for the given sound speed profile. Fortunately, they all
follow directly from the leading behavior �4.1�, which may
be determined via standard dynamic ray tracing methods
�5,6�. Optimal agreement with data will, of course, occur

when Ŝ0��� is confined to high frequencies where one may
simply use �̂ j�x ,x� ;��= �̂ j

�0��x ,x�� in Eq. �4.17�, in which
case ray methods determine all required parameters. If re-
sults are required at a somewhat lower frequency �but not so
low that the Doppler condition �1.4� breaks down�, rather
than computing higher terms in the expansion �4.5� via �ex-
tremely cumbersome� ray techniques, one often has available
an efficient method for computing the Green function itself
�e.g., via an acoustic eigenmodal decomposition� at a se-
quence of frequencies �l. Assuming that the frequency de-
pendence of �̂ j�x ,x� ;�� is fairly weak, one might use the ray
results for the delay times � j and then fit the �̂ j via solution of
the set of suitably truncated linear equations

Ĝ��l� = �
j=1

jmax

�̂ j��̄�ei�l�j, l = 1,2, . . . ,lmax, �4.19�

in which it is assumed that the chosen frequencies are suffi-
ciently closely spaced about some value �̄ that �̂ j��l�
= �̂ j��̄� is essentially constant, while the phase factors ei�l�j

vary substantially. This procedure may be repeated for dif-

ferent values of �̄ covering the domain of Ŝ0���.
An alternative, but related, approach is to focus on the

wave-number spectrum in the neighborhood of the receiver.
Thus we write

G�x0 + x,x�;t − t��  Re	 d3k

�2��3eik�n̂·x−c�xr��t−t���

� ĝ�k,n̂;xr,x�� ,

Ĝ�x0 + x,x�;��  	 d2n̂

�2��2ei�n̂·x/c�xr�

� �ĝ„�/c�xr�,n̂;xr,x�…����

+ ĝ*
„− �/c„xr…,n̂;xr,x�…��− ��� , �4.20�

in which xr is the receiver position, n̂=k /k is the wave di-
rection, and x is assumed small so that we may approximate
c�x0+x��c�x0�. The existence of this decomposition is
guaranteed at high frequency by the condition � /��1,
where � is in this case the scale of variation of the sound
speed in the neighborhood of the receiver. For a single delta-
function plane wave front propagating in direction n̂0 with
amplitude �̂0 and arriving at time �0, we have
ĝ�k , n̂ ;x0 ,x��= �̂0k−2�n̂− n̂0

r�eikc�x0��0. For a sequence of
such arrivals, ĝ will be a sum of such terms for different n̂ j

r,
�̂ j, � j. We identify these parameters with those appearing in
Eqs. �4.7�–�4.10�. Given an efficient method for computing
the Green function itself, Eq. �4.20� provides an alternative
method for computing these parameters through its partial
wave-number decomposition. The similarity between Eqs.
�4.19� and �4.20� is clear since the latter now reduces to a
sum over a discrete number of plane waves. Rather than
using a sequence of closely spaced frequencies to invert for
the amplitudes �̂ j��̄�, one now requires a discrete set of po-
sitions x in order to invert for the spatial Fourier transform.
Numerical tests will be required to see which method, or
perhaps a hybrid of the two, is most practical.
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V. RELATION BETWEEN RAY THEORY
AND MODE REPRESENTATION

A very common approximation used in the description of
ocean environments is a sound speed depending only on the
vertical coordinate z. We summarize in this section the mode
formalism needed to deal with this case, and also show how
ray theory is recovered from it at high frequencies. The gen-
eral results will also be used in later sections to compute
Doppler shift corrections at low frequencies where ray theory
is invalid.

The Green function appearing in Eq. �3.4� in this range-
independent case may be expressed in the form

Ĝ�k;z,z�;�� =
1


�z��
�

j

� j
*�z�;��� j�z;��

k2 − kj���2 − i�
, �5.1�

where �→0+ is a positive infinitesimal reflecting outgoing
wave boundary conditions at infinity. The horizontal inverse
Fourier transform is given by

Ĝ�r − r�;z,z�;�� =
i

4
�z���j

� j
*�z�;��� j�z;��

�H0
�1��kj����r − r��� , �5.2�

where H0
�1� is a Hankel function. Here kj, � j are normalized

solutions to eigenvalue equation

�
�z��z
1


�z�
�z +

�2

c�z�2�� j�z;�� = kj���2� j�z;�� ,

	 dz


�z�
�i

*�z;��� j�z;�� = ij . �5.3�

When kj
2�−� j

2�0, one uses the relation H0
�1��i
�

= �2/ i��K0�
�, where K0 is a modified Bessel function. In the
far field one may use the asymptotic forms H0

�1��
�
�2/�i
ei
, K0�
��� /2
e−
, 
	1. Each propagating
mode �defined by kj

2�0� has a well defined phase velocity
cj

�=� /kj and group velocity cj
g= �dkj /d��−1. The mode ex-

pansion remains valid even when there is coupling to more
complicated elastic media. The only changes in that case are
the boundary conditions satisfied by the � j at any interfaces
and their orthogonality relations.

For the uniform slab �rectangular waveguide� with Dirich-
let boundary conditions and thickness h0 one obtains

� j�z;�� =� 2

h0
sin�qjz�, qj � j�/h0,

kj��� =��2

c2 − qj
2, �5.4�

for j=1,2 ,3 , . . . . In this example the mode profiles are fre-
quency independent, and the mode group and phase veloci-
ties are related via cj

g=c2 /cj
�, with both approaching c at

high frequency for any fixed mode number j. As noted at the
beginning of Sec. III, different classical ray arrivals corre-
spond to different numbers of reflections from the two

boundaries. One may define an effective horizontal group
velocity cg���=c cos��� for a ray propagating at angle �
away from the horizontal. In the mode picture, for any given
frequency one may define an effective propagation angle via
tan�� j�=qj /kj, the ratio of vertical to horizontal wave num-
ber. Using Eq. �5.4� one obtains c cos�� j�=ckj /�kj

2+qj
2=cj

g,
so that there is in this case an exact correspondence between
classical ray theory and mode theory even at low frequen-
cies. This should not be too surprising since deviations from
ray theory �in the sense of broadening of the delta-function
pulses �4.1�� occur only when the sound speed is inhomoge-
neous.

More generally, at high frequencies, where the wave-
length is much smaller that the inhomogeneity length scale
of c�z�, the mode eigenfunctions themselves have a WKB
expansion �5,6�

� j
*�z�;��� j�z;��

1

N j

ei�
z�
z

dz���2/c�z��2−kj���2

�
�
�z��
�z�

� �2

c�z��2
− kj���2�1/4� �2

c�z�2
− kj���2�1/4

,

�5.5�

where N j is a normalization. When combined with the phase
factor eikj����r−r�� arising from the Hankel function, the sta-
tionary phase approximation may be used to identify the
terms that make the primary contribution to the sum �5.2�: at
high frequency kj���=� /cj

���� becomes continuous func-
tion of j, and the stationary phase condition yields

�r − r�� = 	
z�

z

dz�
 cj
����2

c�z��2
− 1�−1/2

. �5.6�

It is easy to verify �5,6� that for given fixed cj
����, Eq. �5.6�

produces a classical ray trajectory, classified most easily by
the upper and lower turning points z̃± at which c�z̃±�
=cj

����. The associated group velocity cj
g��� is also fixed,

and is precisely the mean horizontal speed of the ray. It is
seen therefore that those modes j with group velocity close
to some given value determine precisely the classical ray
with that same group velocity. This identification allows one
to use mode theory to compute group velocities, and hence
ray travel times. Moreover, the Green function �5.2� is al-
ready essentially in the plane wave form �4.20�: for fixed
source and receiver positions, the index j plays the role of
the ray arrival direction, and should be scanned to find the
largest contributing terms. These will correspond to the dis-
crete set of ray arrivals, and provide the required ray param-
eters in Eqs. �4.7�–�4.10�.

VI. GENERAL THEORY

In this section we consider the most general case where
the assumptions that underlie the ray formulation of Sec. III
are weakened, while at the same time restrictions are placed
on the source and receiver trajectories. The starting point is
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the general formula �3.1� for the time-domain signal:

��xr,t� =	 dt�G�xr,xs�t��;t − t��e−i�0t�

= e−i�0t	 d�

2�
e−i��−�0�t�̂�xr;�� , �6.1�

where

�̂�xr;�� � 	 dt�Ĝ�xr,xs�t��;��ei��−�0�t�, �6.2�

in which xr may in fact be time dependent as well, but for
clarity we temporarily suppress this from the notation.

The derivations to follow will involve a large number of
implicit relationships between quantities in the frequency
and time domains, and at different retarded times. Figure 3 is

intended to illustrate these, and will be referred to as that
derivation proceeds.

A. Structure of the Green function

We now propose a general mathematical structure for Ĝ
that will lead to well-defined Doppler shift effects. The struc-
ture, at this stage, should be considered entirely separate
from the physics of the underlying acoustic equation �2.1�
that defines Ĝ, implying that the formal results derived in
this section apply much more generally. In later sections the
acoustic equation will be used to determine the physical con-

ditions under which Ĝ possesses the required form. It would
be interesting to explore other equations which lead to this
structure, but this lies beyond the scope of the present work.

The general results are based on the assumption �to be
verified for any given application� that the Green function
may be decomposed in the form

Ĝ�xr,xs;�� = �
j

Aj�xr,xs;��ei�j�xr,xs;��, �6.3�

where, associated with each term in the sum and each point
in space, there are local receiver and source wave vectors,

k j
r�xr,xs;�� = �r� j�xr,xs;�� ,

k j
s�xr,xs;�� = �s� j�xr,xs;�� . �6.4�

Here k j
r and k j

s, as well as the amplitude Aj are assumed to be
slowly varying, on the scale of the local wavelengths 2� / �k j

r�
and 2� / �k j

s�, at least in the direction of source (and later,
receiver) motion. Figure 3 illustrates the level surfaces of � j,
and the assumption is that these surfaces are locally equally
spaced. Thus, if the wavelength scale is denoted by �, and
the scale of variation is denoted by �, then we assume that
N�� /�	1. Ray theory emerges as a special case where N is
large for variations in all directions, not just along the source
or receiver trajectories. The sum accounts for the multiple
waves through any given point. The slow variation assump-
tion implies that the dependence of the integrand of Eq. �6.2�
on xs�t�� is, locally in time, a superposition of sinusoids with
frequencies �� j�t��=−k j

s ·vs, where vs= ẋs is the instanta-
neous velocity, also assumed to be slowly varying over the
time during which the source travels a distance of order �.
The minus sign implies that the Doppler shift is positive
when velocity and wave number are opposite.

Equation �6.3� is a very general assumption about the
structure of the Green function within the acoustic medium.
It in no way precludes couplings, e.g., through the ocean
floor, to other elastic media described by more complicated
dynamical equations. Everything that follows is based only
on this assumption, and the results that follow will carry over
without change to the more general physical situations.

B. Stationary phase evaluation

Intuitively, given the sinusoidal dependence of Eq. �6.2�
on t�, for a given frequency � the integral should be domi-
nated by those times t� for which �−�0=�� j�t��: as illus-

FIG. 3. �Color online� Schematic diagram illustrating the essen-
tial content of the general Doppler shift theory. The receiver posi-
tion xr is, for the moment, considered to be fixed, and the main set
of wave fronts centered on xr are the level surfaces of the phase
function � j�xr ,xs ;�� for some selected value of j, considered as a
function of xs for fixed xr and �. The actual source is shown tra-
versing some trajectory xs�t��. The �fictitious� acoustic patterns, ar-
riving at xr from a fixed source at two different points along this
trajectory, are shown simply to illustrate the time delay between t�
the observation time t. There will be a special time t�= tj��� �or,
depending on the trajectory, perhaps a discrete set of such times� at
which the received signal actually has frequency �. The source
contribution �� j

s to the Doppler shift �� j
D=�−�0=�� j

s+�� j
r is

determined, self-consistently, by the rate at which xs was crossing
the local wave fronts of � j at that time—this is the content of the
first stationarity condition �6.6� or �6.21�. The time t at which the
source shift �� j

s is actually seen by the receiver is determined by
the time of flight from xs�t�� to xr—this is the content of the second
stationarity condition �6.10� or �6.22�. The receiver contribution
�� j

r to the Doppler shift is finally determined by restoring the time
dependence to xr�t� and adding in the rate at which the receiver
crosses the wave fronts of � j, now viewed as a function of xr for
fixed xs and �. This is the content of Eq. �6.17�, or of Eqs. �6.20�
and �6.24�.
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trated in Fig. 3, the rate at which the source is crossing the
wave fronts of � j should match the observed Doppler shift.
This idea may be stated precisely within the stationary phase
approximation �15�. The integral summands may be written
in the form

�̂ j�xr;�� � 	 dt�Aj�xr,xs�t��;��ei�j�xr,xs�t��;��ei��−�0�t�

=
�

v
	 d��Aj�xr,xs����/v�;�0 + v�/��

� eiN�f j�xr,xs����/v�;�0+v�/��+����, �6.5�

where f j =� j /N, �=���−�0� /v, ��=vt� /�, and v is the
source velocity scale. Here �� has been defined in such a way
that the source moves a distance of order � for order unity
variation in ��, and we have observed that ���� j =�� j /v
�� /�=N, thus motivating the definition of f j. Since N is
large, the integral is dominated by the stationary phase point
��=� j��� determined by

� = ��/v��� j��� j/v� ,

�� j��� j/v� � − k j
s�xr,xs��� j/v�;�0 + v�/�� · vs��� j/v� ,

�6.6�

which is identical to the condition �−�0=�� j�t�� intuited
above. The second derivative of the phase takes the form

f j
�2����� � ���

2 f j =
��

v2 �as · k j
s + �vs · �s��k j

s · vs�� , �6.7�

where as=�t�vs is the instantaneous source acceleration. The
final stationary phase evaluation of �̂ j therefore takes the
form

�̂ j�xr;�� 
�

v
Aj�� j����� 2�

iNf j
�2��� j����

eiN�f j��j����+��j����.

�6.8�

Substituting this form back into the first line of Eq. �6.1�, one
obtains

��xr,t� = e−i�0t�
j

� j�xr,t� ,

� j�xr;t� � 	 d�

2�
e−i��−�0�t�̂ j�xr;��

 	 d�

2�
Aj�� j����� 2�iN

f j
�2��� j����

eiNf̃ j���,

f̃ j � f j�� j���� + ��� j��� − �� , �6.9�

where �=vt /�. Although suppressed from the notation, in
addition to the explicit � dependence entering through �s���,
there is further dependence via the argument �=�0+v� /�. A
stationary phase evaluation of Eq. �6.9� is again appropriate,
with stationary point �=� j��� defined by

�v/����f j = � − � j�� j� , �6.10�

where the derivative is with respect to this latter dependence
only. Whereas Eq. �6.6� determined only the source time ��
at which the frequency shift � originated, Eq. �6.10� deter-
mines the receiver time � at which that shift will actually be
observed by incorporating the time of flight—see Fig. 3. Us-
ing the stationarity condition �6.6�, the second derivative of
the phase now takes the form

f̃ j
�2���� = �v/��2��

2 f j − f j
�2��� j����� j�2 = �v/��2��

2 f j −
�1 + f j

�1��2

f j
�2��� j�

�6.11�

in which the � derivative of the stationarity condition �6.6�
has been used to obtain

��� j = −
1 + f j

�1��� j�

f j
�2��� j�

, �6.12�

where we have defined

f j
�1��� j� � �v/��������f j���=�j��j�

= − vs · ��k j
s. �6.13�

The final result for the received signal is

� j�xr;t� 
iAj�� j�� j��

� f̃ j
�2��� j�f j

�2��� j�� j��
eiNf̃ j��j�. �6.14�

This equation is the basic result of this section. The key
observation is that the time derivative of the phase yields the
instantaneous Doppler shift in the frequency �since the fun-
damental frequency has already been removed as a prefactor
in the first line of Eq. �6.9�� in the form

�� j
D�t� = − k j

r�xr�t�,xs�tj�t��;�0 + v� j�t�/�� · vr�t�

− k j
s�xr�t�,xs�tj�t��;�0 + v� j�t�/�� · vs�tj�t�� ,

�6.15�

in which tj�t�= �� /v�� j�� j�t�� is the source time specified by
the stationarity conditions. All other terms vanish due to the
stationarity condition �6.10�. It is clear, by comparing Eq.
�6.15� with Eqs. �4.11� and �4.12�, that in the high frequency
ray limit one obtains the slowness vectors from the wave
vectors via k j

r /�→w j
r and k j

s /�→w j
s.

C. Signal character in a narrow time window

Consider now the nature of the signal in a neighborhood
of width �t about a reference time t0. Here �t should be such
that the fractional change in amplitude and in the Doppler
shift itself is small: for constant velocity motion in a range-
independent environment the fractional change in the source-
receiver separation vector should be small. On larger time
scales, smearing of the Doppler shift will occur. On the other
hand, meaningful measurement of the Doppler shift requires
that �t	�D�2� /��D, where ��D��0v /c is the scale of
the Doppler shift. This is guaranteed by large N: �v�t�
���0 /2�c�=v�t /� is the number of uniformly spaced wave
fronts traversed during the course of the measurement, and
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the slow variation assumption ensures that this can be made
large by choosing �t=O�� /v�.

Now, the only rapidly varying part of the signal comes
from the phase factor:

Nf̃ j�� j�t�,t� = Nf̃ j�� j�t0�,t0� + �� j
D�t0��t − t0� + O��t − t0�2� ,

�6.16�

and ignoring time variations in the amplitude factor �one
could include linear variation in the amplitudes, as in Eqs.
�4.7�–�4.16�, but for simplicity we shall forego such compli-
cations here�, one obtains in the neighborhood of t0:

�0�t;�0�  e−i�0t0�
j

Bj�t0�e−i�j
D�t0��t−t0�,

� j
D�t0� � �0 + �� j

D�t0� ,

Bj�t0� �
iAj�� j�� j�t0���

� f̃ j
�2��� j�t0��f j

�2��� j�� j�t0���
eiNf̃ j��j�t0��, �6.17�

where we have explicitly included �0 in the notation for �0
in order to emphasize that the result is for a monochromatic
source. The definition of �t guarantees that the nonlinear
correction terms in Eq. �6.16� may indeed by neglected. The
local Fourier transform, over the time interval of width �t
centered on t0, is now trivial to compute from Eq. �6.17�:

�̂0��;�0� � 	
t0−�t/2

t0+�t/2

dt �0�t;�0�ei�t

 e−i�0t0�
j

Bj�t0�
sin��� − � j

D��t/2�

�� − � j
D�/2

.

�6.18�

This represents a special case of Eq. �3.6� in which the win-
dow function w�t� is a simple indicator function on the inter-
val �−�t /2 ,�t /2�. Clearly, any other window function could
be used as well �as in Eq. �4.18��, replacing the sine factor in
the second line of Eq. �6.17� by the window transform ŵ��
−� j

D�.
For a general source spectrum one must compute �0 and

�̂0 for the appropriate range of frequencies and form the
superpositions

�0�t� =	 d�0

2�
Ŝ��0��0�t;�0� ,

�̂0��� =	 d�0

2�
Ŝ��0��̂0��;�0� . �6.19�

D. Summary of results in unscaled variables

The sequence of implicit relations that define the station-
ary phase results is quite involved, and though the scaled
variables � and � are most appropriate for rigorous organiza-
tion of the computation, they do not provide a particularly

transparent set of variables for practical implementation. We
summarize here therefore the key results using the original
physical frequency and time variables.

First, from Eqs. �6.4� and �6.15�, the receiver and source
contributions to the Doppler shifts are defined by

�� j
r�xr�t�,xs�t��;�� � − �t� j�xr�t�,xs�t��;��

=− vr�t� · k j
r�xr�t�,xs�t��;�� ,

�� j
s�xr�t�,xs�t��;�� � − �t�� j�xr�t�,xs�t��;��

= − vs�t�� · k j
s�xr�t�,xs�t��;�� .

�6.20�

The theory begins by providing a mapping between the ob-
served receiver frequency � and the time t�= tj��� at which
the signal producing that �Doppler shifted� frequency left the
source. This mapping is first developed for a fixed receiver
position xr �for which case � is an intermediate frequency
containing only the Doppler shift due to the source�, and is
obtained from Eq. �6.20� by solving the first stationarity con-
dition �6.6�. In physical variables the latter takes the form

� − �0 = �� j
s�xr,xs�tj�;�� . �6.21�

The intuitive content of this equation is clear: the Doppler
shift associated with source motion is given by the rate at
which the source is crossing the acoustic wave fronts gener-
ated by � j. What is perhaps not so obvious is that the fre-
quency at which these wave fronts are being generated is not
the source frequency �0, but the self-consistently determined
Doppler shifted frequency itself.

The theory next relates receiver and source time �also
referred to as “contemporary” and “retarded” time, respec-
tively �2�� by determining the time t at which the signal with
specified frequency � arrives at the receiver. This is the con-
tent of the second stationarity condition �6.10�, which in
physical variables takes the form

t − tj =
�

��
��xr�t�,xs�tj�;�� , �6.22�

and is to be solved for �=� j�t�. The derivative is with re-
spect to the explicit � dependence alone, not that implicitly
contained in tj���. This equation also has a nice interpreta-
tion: the left hand side is the time of flight, while the right
hand side may be rewritten in the form

t − tj = 	
xs�tj�

xr�t� �dx�
v j

g�x;��
, �6.23�

where v j
g= ��kj /���−1 defines the magnitude of the local

mode group velocity, and the integration path connecting xs
to xr has been chosen to be everywhere normal to the sur-
faces of constant � for fixed source position, i.e., parallel to
k j�x ,xs�tj� ;��. This constitutes a version of Fermat’s prin-
ciple. The result �6.23� relies on the added assumption that
the path so defined lies completely within the slowly varying
manifold. This need not be the case: the manifolds around xr
and xs could, for example, be disconnected—further com-
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ments on this will given in Sec. IX—in which case �6.23�
does not make sense, though Eq. �6.22� remains valid. We
shall see below that Eq. �6.23� does have meaning in situa-
tions where the acoustic adiabatic approximation is valid.

The composition tj�t�� tj�� j�t�� is the time at which the
signal left the source in order to arrive at the receiver at time
t. The total Doppler shifted frequency, including both source
and receiver motion is now given by Eq. �6.15�, which in
terms of physical variables reads

� j
D�t� = � j�t� + �� j

r�xr�t�,xs�tj�t��;� j�t��

= �0 + �� j
s�xr�t�,xs�tj�t��;� j�t��

+ �� j
r�xr�t�,xs�tj�t��;� j�t�� , �6.24�

where the second term now adds in the rate at which the
receiver crosses the acoustic wave fronts. Since the receiver
is “passive,” its motion does not affect the frequency � j�t� at
which the wave fronts are being generated. The total signal,
including amplitude factors, is now given by

�0�t;�0� = e−i�0tG�t;�0� � e−i�0t�
j

gj�t;�0� ,

gj�t;�0� �
Aj�t�

N j�t�
ei��j�t�−��j�t�−�0��t−tj�t���,

Aj�t� � Aj�xr�t�,xs�tj�t��;� j�t�� ,

� j�t� � � j�xr�t�,xs�tj�t��;� j�t�� �6.25�

in which the �square of the� normalization is given by

N j�t�2 = ��1 + � j
�1��t��2 − � j

�2��t�
�2� j

��2 �
�=�j�t�

,

� j
�1��t� � 
 �2� j

�� � t�
�

t�=tj�t�

= − �1 +
dtj

d�
� j

�2� �t�� = − �vs · ��k j
s�t�=tj�t�

,

� j
�2��t� � 
 �2� j

�t�2 �
t�=tj�t�

= �as · k j
s + �vs · �s��k j

s · vs��t�=tj�t�
,

�6.26�

where as= v̇s is the source acceleration, the frequency deriva-
tives of � j are again only with respect to explicit � depen-
dence, and all quantities are to be evaluated at observation
time t according to the above two mappings. In the second
line of Eq. �6.25�, the quantities Aj�t�ei�j�t� are just the Green
function components with arguments evaluated according to
these mappings. The additional factor ei��j�t�−�0��t−tj�t�� pro-
duces a phase correction due to the variation of the time of
flight with source motion, and the numerator N j�t� generates
a weighting correction according to the rate of change of the
Doppler effect with time. Although not obvious from Eq.
�6.26�, it is indeed the case that N j→1 in the limit of van-
ishing source velocity so that Eq. �6.25� is consistent with

Eq. �2.8� in the static limit. The narrow time window result
�6.17� now takes the simple form

G�t;�0�  �
j

gj�t0;�0�e−i��j
D�t0��t−t0�. �6.27�

VII. RANGE INDEPENDENT CASE

We now consider various special cases in order to illus-
trate the general results. The simplest is the range-
independent case, illustrated in Fig. 4, where the Green func-
tion takes the form �5.2�. At high frequency the modes
themselves have convenient amplitude-phase decomposition
�5.5�, and together with the asymptotic expansion for the
Hankel function this leads to the ray formulation of the Dop-
pler shift discussed in Sec. IV. However, even at low fre-
quency, where the modes do not have a convenient sinu-
soidal structure, the horizontal dependence remains
sinusoidal. The previous theory therefore allows a conve-
nient formulation of the low-frequency Doppler shift, so long
as the source velocity is horizontal. For large �r−r�� we iden-
tify

� j = kj����rr − rs� ,

Aj =
1


�zs�
� j

*�zs;��� j�zr;��
�− 8�ikj����rr − rs�

, �7.1�

FIG. 4. �Color online� Illustration of range-independent case for
the case of a horizontal, linear source trajectory. The horizontal
wave fronts � j for each mode are circular, and uniformly spaced,
although the wave number kj��� is a nontrivial function of fre-
quency, determined by the eigenvalue equation �5.3�. As in Fig. 3,
a fictitious signal due to a stationary source �also with uniformly
spaced, circular wave fronts� is used to illustrate the source-receiver
time delay.
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and therefore

k j
r = − k j

s = kj���n̂rs, �7.2�

where n̂rs= �rr−rs� / �rr−rs� is the horizontal unit vector
pointing from source to receiver. No particular orthogonality
properties of the mode eigenfunctions, which are basically
“carried along for the ride,” are assumed in what follows.
Therefore, again, the results do not preclude more compli-
cated physical situations, e.g., in which the acoustic medium
is coupled to other elastic media. In order to obtain an ana-
lytically tractable problem, we consider the simple case of
linear motion, rs�t��=rs

0+vst�, choosing vs=vx̂ to be con-
stant and along the x axis �Ref. �2� considers also the case of
circular motion�. We take �=1/kj��0�, and �= �rr−rs

0� �since
deviations from simple plane wave structure, which locally
approximates the outgoing spherical wave, appear only on
the scale of the separation distance�, and hence N
=kj��0� �rr−rs

0� and ��=vt� / �rr−rs
0�. The conditions for va-

lidity of the stationary phase approximation are therefore met
so long as the separation is much larger than the wavelength.
The phase function is

f j = � j

�rr − rs�����
�rr − rs

0�
�7.3�

and the first stationarity condition �6.6� takes the form

� =
� − �0

vkj��0�
= � jn̂rs�� j� · x̂ , �7.4�

where � j���=kj��� /kj��0�. The solution to Eq. �7.4� is

� j = n̂rs
x �0� −

�

�� j
2 − �2

�n̂rs
y �0�� , �7.5�

whence xr−xs�� j�=� �yr−ys
0 � /�� j

2−�2 and �rr−rs�� j��
=� j �yr−ys

0 � /�� j
2−�2 �where we have noted that since � j �0,

� must have the same sign as xr−xs�� j��. The total phase
takes the form

f j + �� j = �n̂rs
x �0� + �� j

2 − �2�n̂rs
y �0�� , �7.6�

in which the unit vector components are evaluated at ��=0.
Since the acceleration term vanishes in this case, the second
derivative �6.7� takes the form

f j
�2� =

��2 − �2�3/2

�2�n̂rs
y �0��

, �7.7�

and the final result is

�̂ j�xr;�� 
i

2
�zs
0�kj��0�v

� j
*�zs

0;��� j�zr;��

�� j
2 − �2

� eikj��0����xr−xs
0�+��j

2−�2�yr−ys
0��. �7.8�

Although not obvious from the derivation, this final result
turns out to be exact �1�, even though Eq. �7.1� is only
asymptotic.

The total phase for the second stationary phase computa-
tion may be put in the form

f̃ j =
�rr − rs����

�rr − rs
0�

��n̂rs
x ��� + �� j

2 − �2�n̂rs
y ����� �7.9�

and the second stationarity condition �6.10� may be put in the
form

n̂rs
x ���

�n̂rs
y ����

� cot��s� =
� j − � jv/v j

g

�� j
2 − � j

2
, �7.10�

where −���s����� is the angle between the source veloc-
ity and the instantaneous source-receiver separation vector
�so that n̂rs

x =cos��s� and n̂rs
y =sin��s��, and v j

g���
= ��kj��� /���−1 is the mode group velocity. The same result
may be obtained by directly by extremalizing �7.9� with re-
spect to �. Note again that all frequency dependent quantities
are to be evaluated at �=� j =�0+kj��0�v� j. The inputs to
the second derivative �6.11� are given by Eq. �7.7� and

v2kj��0�2��
2 f j = −

�n̂rs
y �0���v/v j

g�2Dj

�� j
2 − � j

2
,

d� j

d�
= − �n̂rs

y �0��� j

� j − � jv/v j
g

�� j
2 − � j

2�3/2
, �7.11�

where

Dj��� � kj���
�v j

g���

��
�7.12�

measures the rate of change of the group velocity relative to
the phase velocity. One obtains

f̃ j
�2� = −

�n̂rs
y �0��

�� j
2 − � j

2��� j − � jv/v j
g

� j
2 − � j

2 �2

+ �v/v j
g�2Dj�

= −
�n̂rs

y �0��

�� j
2 − � j

2�n̂rs
y ����2

�1 − �vn̂rs
y ���

v j
g �2

�1 − Dj�� ,

�7.13�

where the somewhat more transparent form in the second
line follows from the real-time source-receiver direction,

�n̂rs
x ���, �n̂rs

y ����� = �cos��s�,sin��s��

=
�� j − � jv/v j

g,�� j
2 − � j

2�

��� j − � jv/v j
g�2 + �� j

2 − � j
2��v/v j

g�2
,

�7.14�

which in turn follows directly from Eq. �7.10�. The result
�7.13� also follows directly from computing the second
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derivative of Eq. �7.9� with respect to � and evaluating it at
� j���, which provides a useful check on the general theory.
The time domain field �6.14� now follows in the form

� j�xr,t� 
i

2
�zs
0�

e−i�0t� j
*�zs

0;� j����� j�zr;� j����

�
1

N j���
eikj��0��rr−rs������jn̂rs

x ���+��j
2−�j

2�n̂rs
y �����,

�7.15�

with squared normalization,

N j���2 = 2�ikj��0��rr − rs����
� j − � jv/v j

g

cos��s�

��1 − �sin��s�v/v j
g�2�1 − Dj�� . �7.16�

The result �7.15� is identical to that obtained by Hawker �1�.
He dealt explicitly only with the case of a stationary receiver,
but it is actually a trivial step to substitute a time-dependent
receiver position xr�t� into his results to obtain the more
general result given below.

The implicit dependence of the frequency � j on � j��� pre-
cludes a general analytic solution of the stationarity condi-
tion �7.10�. However, for small source velocity one may gen-
erate a solution as a power series in the small parameter � j
=v /v j

g��0�,

� j = � j,0 + � j� j,1 + � j
2� j,2 + ¯ ,

� j = � j,0 + � j� j,1 + � j
2� j,2 + ¯ ,

f̃ j =
�rr − rs����

�rr − rs
0�

�f j,0 + � j f j,1 + � j
2f j,2 + ¯ � , �7.17�

in which the coefficients are given by �1�

� j,0 = � j,1 = f j,1 = cos��s� ,

� j,1 = � j,0 = f j,0 = 1,

� j,2 =
1

2
cos��s��1 + �1 − Dj,0��1 + sin2��s��� ,

� j,2 =
1

2
�2 − Dj,0cos2��s�� ,

f j,2 =
1

2
�1 + �1 − Dj,0�cos2��s�� , �7.18�

where Dj,0=Dj��0�. Correct to first order in � j one therefore

obtains N j =�2�ikj��0� �rr−rs����.
To illustrate, using �0=2��100 Hz, v j

g�c=1500 m/s,
v=5 m/s, one obtains kj��0���0 /c�0.4 m−1 and � j

=1/300. Thus the stationary phase approximation, requiring
kj��0� �rr−rs � 	1, will be valid for separations larger than,
say, a few tens of meters. The approximation will therefore
be extremely accurate for the more typical separations of

order kilometers. On the other hand, kj��0�� j �10−3 m−1 im-

plies that first order contributions to the phase Nf̃ j will be of
order unity for separations of order a kilometer or greater.
Similarly, kj��0�� j

2�3�10−6 m−1, kj��0�� j
3�10−8 m−1 im-

plies that second order corrections become important for
separations of order 300 km or greater, while third order cor-
rections may be dropped for separations less than 105 km.
Clearly, including zeroth and first order corrections alone
should suffice for most applications.

In the neighborhood of some reference time t0 one obtains

Nf̃ j�� j�t0�,t0� = kj��0��rr�t0� − rs�t0��

��1 +
n̂rs�t0� · vs

v j
g��0�

+ O�� j
2�� , �7.19�

and the frequency Doppler shift is given by

�� j
D�t0� = kj��0�

d

dt
��rr�t� − rs�t�� f̃ j�� j�t�,t��t=t0

= kj��0��� j�vr
x − vs� + �� j

2 − � j
2vr

y�t=t0

= kj��0�n̂rs�t0� · �vr − vs��1 + O�� j�� . �7.20�

The parameters appearing in the time domain signal �6.17� in
the neighborhood of t0 are therefore given by �keeping only
leading corrections�:

� j
D�t0� = �0 + kj,0n̂rs�t0� · �vs − vr� ,

Bj�t0� �
1


�zs
0�

� j
*�zs

0;� j�t0��� j�zr�t0�;� j�t0��

�
eikj��0��rr�t0�−rs�t0���1+n̂rs�t0�·vs/vj

g��0��

�− 8�ikj,0�rr�t0� − rs�t0��
,

� j�t0� = �0 + kj,0n̂rs�t0� · vs. �7.21�

An illustrative numerical solution is described in Fig. 5. Note
that an equivalent approximate result, Eq. �22� in Ref. �4�,
appears to differ in a number of ways from the rigorous
result �7.21�. When examined closely, however, the differ-
ences are minor. First, these authors evaluate kj at the Dop-
pler shifted �receiver� frequency � j

D, rather than the source
frequency �0. As a result, vr replaces vs in the �1
+ n̂rs�t0� ·vs /v j

g��0�� exponent correction factor in Eq. �7.19�.
When their kj is reexpanded to first order about �0, the two
velocities are interchanged and the discrepancy disappears.
Second, they evaluate the mode eigenfunctions � j at the
same fully Doppler shifted receiver frequency, instead of the
partially Doppler shifted �by source motion only� frequency
� j�t0�. With this replacement, the prefactor Bj�t0� is correct
only to zeroth order in � j, and is therefore accurate only if the
eigenfunctions vary weakly with frequency. Under most cir-
cumstances this is probably a reasonable assumption, and
one may, for increased numerical efficiency, simply set
� j�t0�=�0 �or � j

D� inside the mode eigenfunctions. However,
care should be taken for modes close to the boundary be-
tween discrete and continuous spectrum where more rapid
dependence on frequency occurs �5,6�. Finally, the sinusoidal
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“window function” is replaced by ��−� j
D�, which is only

valid for very large �t.
The group velocity and its frequency derivative, required

as inputs to the above results, may be computed directly
from the mode eigenfunctions. The required relations are
summarized in Appendix A.

VIII. ADIABATIC APPROXIMATION

A. Adiabatic Green function

The adiabatic approximation, in which scattering of en-
ergy between local modes is ignored, is commonly used for
the frequency-domain Green function in the case of weakly

FIG. 5. �Color online� Illus-
tration of modal Doppler shifts
for the range-independent case
using a parabolic sound speed
profile c�z�=c0+c1�2z /H0+1�2

with c0=1500 m/s, c1=50 m/s,
and vertical coordinate in the
range −H0�z�0 with depth
H0=200 m. The density 
 is
taken to be uniform. The source
moves at speed vs=5 m/s, depth
z=−H0 /2, and has frequency
�0=2��100 Hz. The receiver
is taken to be fixed at the same
depth at a perpendicular distance
of d0=300 m from the source
track �see Fig. 4�. The effective
potential V=−�2 /c2, overlayed
by the first few modal eigenfunc-
tions � j�z� �each offset by the
corresponding eigenvalue −kj

2 in-
dicated by the dotted lines� is
shown in the upper plot. The
eigenfunctions are taken to obey
Dirichlet �free surface� boundary
conditions at z=0, and Neumann
�rigid bottom� boundary condi-
tions at z=−H0. The leading or-
der Doppler shifts �� j

D /2�

=−kj��0�vsx /2��x2+d0
2 �Eq.

�7.21�� as functions of the dis-
tance x along the track, are
shown in the lower plot for all
propagating modes �for which
kj

2�0—the first 27 modes in this
case�. The inset shows the signal
envelope Re ��xr , t� �carrier tone
e−i�0t removed�, normalized to
unity at x= t=0, as the source
traverses the positive part of the
track, 0�x�1 km. The chaotic
beating phenomena is due to
mode interference.
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range-dependent media. Let � be the scale of horizontal
variation of c and 
, and let R=r /�. The approximation is
derived in the limit of large � by seeking solutions to the
source-free acoustic equation in the form

��z;r� = A�z;R�ei���R�, �8.1�

in which the amplitude A has a multiple scales expansion in
inverse powers of �:

A�z;R� = A0�z;R� +
1

�
A1�z;R� +

1

�2A2�z;R� + ¯ .

�8.2�

Substituting this form into Eq. �2.2�, one obtains at zeroth
order in �:



�z
1



�z +

�2

c2 �A0 = ��R��2A0. �8.3�

This is an eigenvalue equation for the z dependence of A0,
with eigenvalue ��R��2. The solutions are therefore given by

A0 = A0�R�� j�z;r�

��R��2 = kj�r�2, �8.4�

in which A0 is an as yet undetermined amplitude, which for
the acoustic problem may be normalized be making � j real.
The Eikonal equation obeyed by � implies that it is deter-
mined by Fermat’s principle:

���R� � � j�rr,rs;�� = 	
0

s

kj�r�s���ds�

 kj�rs��rs − rr�, �rs − rr� � � , �8.5�

in which the integration path r�s��, parametrized by arc
length and with given endpoints r�0�=rs and r�s�=rr, is that
which minimizes � j and is the solution to the pair of recur-
sion relations

dr�s��
ds�

= n̂�s�� ,

dn̂�s��
ds�

= �1 − n̂�s��n̂�s��� · � ln�kj��;r�s����

= m̂�s���m̂�s�� · ��ln�kj�r�s���� , �8.6�

in which n̂�s�� is the unit vector tangent to the ray at r�s��,
and m̂�s����n̂y�s�� ,−n̂x�s��� is the corresponding normal.
The last line of Eq. �8.6� demonstrates that horizontal refrac-
tion occurs in the presence of a gradient in kj in the direction
orthogonal to the ray.

At first order in �−1 one obtains

�
�z

1



�z +

�2

c2
− kj�r�2�A1 = 2i�
A0�R� · �R

� j

�


+ i�2�R� · �RA0 + �R
2 ��A0� j .

�8.7�

Since, as a function of z for each fixed R, � j is the kernel of

the operator on the left hand side of Eq. �8.6�, in order for a
solution to exist, the right hand side must be orthogonal to
� j. Multiplying by � j /
 and integrating over z, this condition
determines A0 via

�R� · �Rln�A0� = −
1

2
�R

2 � , �8.8�

where we have used the fact that 2�dz�� j /�
��R�� j /�
�
=�R�dz� j

2 /
=0 due to the normalization of � j. The solution
is

A0,j�rr,rs;�� � A0�R� = lim
s0→0

1
�kj�rs�s0

�exp�−
1

2
	

s0

s

ds�
�r

2� j�r�s��,rs;��
kj�r�s��� �


1

�� j�rr,rs;��
, kj�rs�−1 � �rr − rs� � �

�8.9�

in which the prefactor in the second line eliminates the loga-
rithmic singularity in the exponent as s0→0. Evaluation of
�2� j requires a second pair of recursion relations. Let
��s��= �dr /d��� and ��s��= �dn̂ /d��� be the rate of change
of ray coordinate and unit normal, on the fixed level curve of
� j defined by r�s��, with initial ray direction � (defined by
n̂�0�= �cos��� , sin����). Then ��s�=
�s�m̂�s�, ��s�
=��s�m̂�s� are both parallel to the level curve of � j, and the
magnitudes 
�s�� and ��s�� obey the recursion relations

d
�s��
ds�

= ��s�� ,

d��s��
ds�

= − 
�s��kj�r�s���m̂�s�� · ��m̂�s�� · �� �
1

kj�r�s����
− ��s���n̂�s�� · ��ln�kj�r�s���� . �8.10�

with initial conditions 
�0�=0 and ��0�=1. Then

kj�r�s�����s��


�s��
= m̂�s�� · ��m̂�s�� · �� � � j„r�s��,rs;�…�

�8.11�

is the curvature of the level curve of � j at r�s��. On the other
hand, the second normal derivative may obtained directly
from Eq. �8.6� via

„n̂�s�� · �… � � j�r�s��,rs;�� =
d

ds�
�kj�r�s���n̂�s���

= �kj„r�s��… . �8.12�

Thus using

�2� j�s�� = n̂�s�� · ��n̂�s�� · �� � � j�s���

+ m̂�s�� · ��m̂�s�� · �� � � j�s��� , �8.13�

one finally obtains
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A0,j�rr,rs;�� = lim
s0→0

1
�kj�rr�s0

exp�− 	
s0

s

ds�
��s��

2
�s��� .

�8.14�

Combining Eq. �8.9�, valid for large � j, with the range-
independent result �5.2�, valid for �rr−rs � ��, one finally
obtains the Green function

Ĝ�xr,xs;�� 
i

4
�zs�
�

j

� j�zs;�;rs�� j�zr;�;rr�

� H j�rr,rs;�� , �8.15�

in which

H j�rr,rs;�� =�
H0

�1��� j�rr,rs;��� ,

�rr − rs� � �

� 2

i�
A0,j�rr,rs;��ei�j�rr,rs;��,

�rr − rs� 	 kj�rs�−1.

�8.16�

All higher order terms, which induce scattering between
modes, in the expansion �8.2� have been neglected.

B. Doppler theory

Comparing the structure of the adiabatic Green function
�8.15� with the form �6.3� imposed by the general theory, one
immediately identifies

� j�xr,xs;�� = � j�rr,rs;�� ,

Aj�xr,xs;�� =
� j�zs;�;rs�� j�zr;�;rr�


�zs��− 8�i
A0,j�rr,rs;�� ,

�8.17�

where in the adiabatic case the dependence of the phase is on
the horizontal coordinates alone. The adiabatic condition
kj�rs��	1 is seen to be identical to the general requirement
�1.4� for a well defined Doppler shift, and no further con-
straints need to be imposed.

The local wave vectors �6.4� are given by

k j
r�rr,rs;�� = kj��;rr�n̂ j

r,

k j
s�rr,rs;�� = − kj��;rs�n̂ j

s, �8.18�

in which the unit vectors n̂ j
s,r= �dr�s�� /ds��s�=0,s are the hori-

zontal directions at source and receiver defined by the ray
path connecting them.

A common form of the adiabatic approximation is based
on the assumption that horizontal variations in the kj, in ad-
dition to being slow, are bounded and small. In this case one
may approximate the ray path by a straight line to obtain

� j�rr,rs;�� = 	
0

�rr−rs�

kj��;rs + s�n̂rs�ds�, �8.19�

in which n̂rs is the unit vector pointing from source to re-
ceiver. The contours of constant � j are near circular, and ray
bending �horizontal refraction� is neglected �4�. The local
wave vectors are now given by Eq. �8.18� with n̂ j

r,s both
replaced by n̂rs. In deep ocean environments, where the
propagating modes are confined within the SOFAR channel,
this approximation is generally valid. However, in littoral
environments, where the modes are much more sensitive to
bathymetric variations, it is likely to break down. When there
are slow, large scale variations in the depth, the horizontal
wavenumber kj�r�, along with the horizontal mode group
velocity, may change by factors of order unity. This will
induce significant ray bending, and the full ray theory must
be employed to compute � j. For example, a ray propagating
shorewards into increasingly shallow water will eventually
encounter a turning point where kj vanishes, causing it to
reflect back towards deeper water again �3�.

The first stationarity condition �6.6� for ��=� j��� takes the
form

�/� = − û · k j
s�rr,rs

0 + v̂�� j;�0 + v�/�� , �8.20�

where we take rs=rs
0+vst�, with constant velocity vs=vû in

some horizontal direction û. Equation �8.20� determines the
time �or times, since multiple solutions are not forbidden in
principle� t�=�� j /v, in the source’s frame of reference, at
which a specified Doppler shift v� /�=−k j

s ·vs occurs. Solu-
tion of this equation requires detailed knowledge of the
phase function � j, and in general must be carried out nu-
merically, though analytic solutions are possible for simple
model forms for kj�� ;r� �e.g., constant plus linear gradient�.
In the linear ray approximation �8.19�, one obtains
k j

s�rr ,rs ;��−kj�� ;rs�n̂rs, and Eq. �8.20� simplifies to

� = − �kj�� + v�/�;rs�� j��û · n̂rs�� j� , �8.21�

which still in general requires a numerical solution. Here
n̂rs�� j� is the source-receiver direction at source time � j. In
the range-independent case �8.21� reduces to Eq. �7.4� �with
the choice �=kj��0��.

In the adiabatic approximation the second stationarity
condition �6.10� takes the form

� − � j�� j� =
v

�

 �� j

��
�

�=�0+v�j/�

=
v

�
	

0

s ds�

v j
g��0 + v� j/�;r�s���

,

�8.22�

with r�0�=rs�� j� and r�s�=rr, and with local group velocity
v j

g�� ;r�= ��kj�� ;r� /���−1. The left hand side is clearly the
�scaled� time of flight, determined by the local group veloc-
ity along the ray path.

Given the solution ��=� j��� of Eq. �8.20�, the forward
calculation, via Eq. �8.22�, of the arrival time �=��� ,� j�, is
trivial: one need only evaluate the scaled flight time for the
given values of � and � j���, and add it to � j���. Therefore,
for numerical purposes, it is probably most efficient to solve
for the measured signal parametrically by plotting
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� j�rr ,����� /v� against ����, both as a function of scaled
Doppler shift �. There is a complication when the receiver
coordinate rr=rr��� /v� becomes time dependent, because �
now appears implicitly in the upper limit of the time of flight
integral. Even the forward calculation then requires an itera-
tive solution that matches the value of � computed on the left
hand side of Eq. �8.22� with the value used to determine the
receiver position on the right hand side. One could instead,
in principle, solve Eq. �8.20� for the Doppler shift as a func-
tion of source time �=� j����, then solve Eq. �8.22� for
��� j ,��� as before, and thereby determine the receiver signal
� j�rr ,���� j����� /v� parametrically as a function of retarded
time �� �2,3�. However, inversion of Eq. �8.20� is probably
rather difficult since a new diagonalization of the mode equa-
tion would have to be performed for each iteration in the
search for the correct �.

Equations �8.20� and �8.22� determine the full Doppler
shift �6.15�. The phase and amplitude, for input into Eqs.
�6.14� and �6.17�, evaluated at the correct Doppler shifted
frequency, follow from Eq. �8.17�. Finally, to completely
specify all inputs into these two equations, one requires now
only the terms for computing the second derivatives f j

�2� and

f̃ j
�2� given by Eqs. �6.7� and �6.11�. The relevant expressions

are provided in Appendix B.
In Ref. �4� a heuristic form for the adiabatic Doppler shift

is given which differs substantially from the rigorous result
above. The most significant differences, in addition to those
already discussed above for the range-independent case, are
the neglect of corrections to the linear ray assumption �8.19�
�thereby neglecting any nonradial components of the local
wave vectors�, and the appearance of group velocities evalu-
ated only at the integration endpoints rather than the line
average �8.22�. In many applications the total variation in the
mode structure across the region of interest is only a few
percent, and these discrepancies are in fact very small. In
more complicated cases, where there are gradual, but order
unity relative variations in the bathymetry or in the sound
speed profile, the full theory presented here must be used.

IX. SUMMARY AND CONCLUSIONS

Equations �6.14�–�6.18� are the basic results of this paper.
It is worth summarizing their key ingredients and how each
would be implemented in data processing:

�1� The basic assumption underlying the theory is the ex-
istence of the decomposition �6.3� of the Green function. Ray
theory, range-independent mode theory, and weakly range-
dependent adiabatic mode theory provide different limits in
which this expansion may be realized explicitly. The validity
of the adiabatic approximation is guided by precisely the
same � /��1 requirement that constrains the Doppler theory.
Therefore, at least locally, the adiabatic approximation con-
tains all necessary ingredients for a general Doppler shift
calculation. Globally, however, things may be more compli-
cated. As illustrated in Fig. 6, there may be regions, that
could in fact separate source and receiver, where the adia-
batic approximation fails. The full Green function must
therefore tie together the different adiabatic regions, and

hence the different pieces of the phase functions � j, gener-
alizing Eq. �8.15� to the case where rr and rs lie in different
regions. This will require not only generalization of the hori-
zontal dependence �8.16�, but also allow for coupling,
Aij�i�z ;� ;rs�� j�z ;� ;rr�, between different modes induced
by rapid environmental changes in the intervening regions.
Standard numerical codes, such as KRAKEN �9�, already ac-
count for these mode coupling effects in various approxima-
tions, and could be used to compute the “scattering coeffi-
cients” Aij. One could then construct the proper
generalization of Eq. �8.15�, allowing direct application of
the general results of Sec. VI. This will be investigated in
detail in future work �16�.

�2� In a similar vein, dissipation effects, appearing
through an additional linear time derivative term in Eq. �2.1�,
and hence an additional i� term in Eq. �2.2�, will lead to
complex mode eigenvalues, and in general alter the mode
shapes. The Green function will decay exponentially with
horizontal distance on some new frequency-dependent dissi-
pation length scale �d���, but with � /�d�1 expected for
most applications. These new features will strongly affect the
computation of the amplitudes Aj �though probably less so
the phases � j� on scales larger than �d. However, the exis-
tence of the decomposition �6.3�, and the general theory that
follows, should not be affected.

�3� Each � j defines a pair of frequency-dependent local
wave vectors k j

r, k j
s �which reduce, after dividing by fre-

quency, to the slowness vectors �4.10� in the ray limit�. The
Doppler analysis ties these, through the stationarity condi-
tions, to the observed Doppler shift. By Fourier transforming
over a suitably narrow time window �but wide enough that
the Heisenberg uncertaintylike condition �t ���D � �2�
holds�, Eq. �6.18� represents the measured signal as a super-
position of different Doppler shifts �corresponding to differ-
ent classical arrival paths in the ray limit, or mode group
arrivals in the mode picture�, of the same underlying source

signal Ŝ���. If Ŝ��� is very sharply peaked �with bandwidth

smaller than the Doppler shifts�, �̂0 will have a discrete spec-
trum of sharp peaks, one at each Doppler shifted frequency.

�4� The object of the receiver data processing is to invert
for some set of unknown source and/or environmental pa-

FIG. 6. Schematic example showing a shelflike topography
which produces two adiabatic regions separated by a strongly scat-
tering, nonadiabatic region. A source on the left will produce well
defined Doppler frequencies at a receiver on the right �and vice
versa� even though the phase functions � j�xs ,xr ;�� may not exist,
or at least fail to generate the required slowly varying wave vectors
k j

r, k j
s, along the entire line joining xr and xs.
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rameters. If the source signal and the source and receiver
trajectories are known, one may, for example, tune the envi-
ronmental model to obtain best agreement between predicted
and known data. Alternatively, given an accurate environ-
mental model, one may invert for source data.

�5� It may be the case that the source signal is stochastic
so that, say, the mean signal �S0�t��=0 vanishes, and only the
source cross correlation function ��t− t��= �S0�t�S0�t���
�whose Fourier transform is the source power spectrum
�̂���� is known. In this case the measured signal is also
stochastic and Eq. �6.14� must be used to construct a relation
between the data covariance ��t− t��= ��0�t��0�t��� �whose

Fourier transform is the receiver power spectrum �̂���� and
�. This will be addressed in future work �17�.
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APPENDIX A: SOME USEFUL RESULTS FROM MODE
PERTURBATION THEORY

All inputs to Eqs. �7.16�–�7.18� may be computed from
the mode theory. Standard perturbation theory �5,6� yields
the change in the eigenvalue ��kj

2� under a change ���2 /c2�
in the sound speed term in Eq. �5.3� in the form

��kj
2� =	 dz� j

*�z����2/c2�� j�z� , �A1�

where � j�z� is the perturbed eigenfunction, given to first
order by

� j�z� = � j�z� + �
l��j�

Clj

kj
2 − kl

2
�l�z� + ¯ ,

Clj �	 dz�l
*�z����2/c2�� j�z� , �A2�

with normalization

	 dz�l
*�z�� j�z� = lj �A3�

and the condition that the change in eigenfunction be or-
thogonal to the original:

	 dz� j
*�z��� j�z� − � j�z�� = 0. �A4�

The special case of a perturbation given by a simple fre-
quency shift �=�0+�� one obtains ���2 /c2�= �2�0

+����� /c2, whence

� j�z;�0 + ��� = � j�z;�0� + 2�0��

� �
l��j�

clj��0�

kj��0�2 − kl��0�2
�l�z;�0� + O���2� ,

kj���2 = kj��0�2 + cjj��0��2�0 + �����

+ 4�0
2��2 �

l��j�

�clj��0��2

kj��0�2 − kl��0�2
+ O���3� ,

clj��0� � 	 dz
�l

*�z;�0�� j�z;�0�

c�z�2
, �A5�

and exact expressions for the group velocity and its deriva-
tive follow in the form

v j
g��� =

kj���

�cjj���
,

Dj��� � kj���
dv j

g���

d�
= 1 −

1

2
v j

g���2
d2

d�2
kj���2,

= 1 − v j
g���2�cjj��� + 4�2 �

l��j�

�clj����2

kj���2 − kl���2� .

�A6�

The expression for � j�z ;�0+��� in Eq. �A5� may also prove
useful for computing the Doppler shifted eigenfunctions in
Eq. �7.15�, in place of recomputing them at each new fre-
quency � j, though care should be taken to ensure that the
frequency shift is indeed sufficiently small for each j.

Although the horizontal label r has been suppressed, the
above results also yield the local parameter values required
for input to the adiabatic results in Sec. VIII.

The above formulas rely on the orthonormality of the
mode eigenfunctions. In more realistic models the acoustic
medium is coupled to an elastic half space �the ocean sub-
bottom�. Extension of the normal mode method to this case
is straightforward, but the mode eigenfunctions now acquire
a vector character �due to the presence of both longitudinal
and transverse polarizations in the elastic medium� and the
above formulas must be suitably generalized.

APPENDIX B: PHASE SECOND DERIVATIVES IN THE
ADIABATIC APPROXIMATION

In this appendix it is shown how to compute the phase
second derivatives �6.7� and �6.11� using the ray tracing for-
malism. The source wave-vector derivative, which requires
second derivatives of � j, follows from Eqs. �8.11� and
�8.12�. Use is made of the symmetry of � j�rr ,rs�
=� j�rs ,rr� under interchange of source and receiver coordi-
nates. Thus if r̄�s��=r�s−s�� is the reverse path from re-
ceiver to source, then

��rr,rs� = 	
0

s

kj�r̄�s���ds�, �B1�

while the tangent vector n̄�s��=dr̄�s�� /ds�=−n̂�s−s��, and
corresponding normal vector m̄�s��=−m̂�s−s��, are re-
versed. One therefore obtains from Eq. �8.12�
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�n̂ j
s · �s�k j

s�rr,rs;�� = − �n̄�s� · �s�k j
s�rr,rs;�� = − �sk�rs� .

�B2�

The orthogonal derivative along m̂ j
s is obtained by defining

the reverse path quantities 
̄�s��, �̄�s�� via Eq. �8.10�, but
with all quantities replaced by their overbarred counterparts.
One obtains from Eq. �8.11�

m̂ j
s · ��m̂ j

s · �s�k j
s�rr,rs;��� = m̄�s� · ��m̄�s� · �s�k j

s�rr,rs;���

=
kj�rs��̄�s�


̄�s�
. �B3�

Finally, the component of the derivative along n̂ j
s is obtained

from Eq. �B3� via the equality of the mixed partial deriva-
tives:

n̂ j
s · ��m̂ j

s · �s�k j
s�rr,rs;��� = m̂ j

s · ��n̂ j
s · �s�k j

s�rr,rs;���

= − �m̂ j
s · �s�k�rs� . �B4�

Equations �B2�–�B4� provide the required expressions for the
four components of the derivatives of k j

s using the local co-
ordinate system provided by the natural unit vectors n̂ j

s and
m̂ j

s. The required components along the source velocity vs
follow from the identity vs= �n̂ j

s ·vs�n̂ j
s+ �m̂ j

s ·vs�m̂ j
s.

The second derivative of the phase with respect to fre-
quency follows from the following general formula. For any
function q�r ;��, the frequency derivative of its integral
along the ray path is given by

�

��
	

0

s

ds�q�r�s��;�� = 	
0

s

ds����q

+ q��r�s�� · m̂�m̂ · ��ln�q/kj�� ,

�B5�

in which ��r�s� accounts for the variation of the ray path
with frequency. The last term vanishes when q=kj, consistent
with the stationarity condition on � j �Eq. �8.5��, and con-
firms Eq. �8.22�. From Eq. �8.22� one therefore obtains

��
2 f j�rr,rs;�� = −

�

�
	

0

s

ds����v j
g − v j

g��r · m̂�m̂ · � �ln�v j
gkj�

�v j
g�2 �.

�B6�

Finally, the derivative of � j��� is given by

d� j���

d�
= − � 1 + vs · ��k j

s

as · k j
s + �vs · �s�k j

s · vs
�

�=�0+v�/�

, �B7�

in which

��k j
s�rr,rs;�� =

n̂ j
s

v j
g��;rs�

+ kj�rs���n̂ j
s. �B8�

All quantities are to be evaluated at the stationary point �
=� j���, rs=rs

0+ û�� j�� j� at the end. In Appendix A it was
shown how to compute the required inputs, namely the local
group velocities and their frequency derivative, from the
mode eigenfunctions.
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